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Film evaporation of a spherical droplet over a hot surface is investigated in this 
paper. In view of the radial evaporation-induced velocity at the liquid-gas interface, 
an improvement over the classical flow field solution of Stimson & Jeffery (1926) 
needs to be employed. In addition to the flow, the energy equation internally and 
externally to the droplet and the species equation in the gas phase are also solved. 
The boundary conditions at the droplet surface couple the temperature, species and 
flow field. Analytical expressions for the hydrodynamic force and its components 
(viscous and pressure) that the droplet experiences are obtained. It is shown that, 
depending on the droplet separation distance from the hot surface and the type of 
liquid, there may be a substantial temperature variation along the droplet surface. 
Furthermore, considering a quasi-steady approximation for the droplet regression 
rate and balancing at each time step the weight of the droplet with the hydrodynamic 
force it experiences, time histories are obtained numerically for various quantities of 
interest. Thus, it  is predicted that the droplet moves away from the hot surface while 
evaporating and that the initially substantial temperature variation along the 
droplet surface decreases with time and diminishes towards the end of the droplet 
lifetime. It is also shown that the droplet surface temperature is more uniform at 
higher hot-surface temperature. 

1. Introduction 
The understanding of droplet evaporation near a hot surface is of interest in many 

industrial applications such as combustion engines, turbine machinery and cooling 
and drying processes. A droplet evaporating over a hot surface undergoes different 
modes depending on the hot-surface temperature T,. For T, larger than the 
temperature corresponding to the so-called Leidenfrost point, the droplet evaporates 
while floating above its own vapour, and the evaporation time decreases with 
increasing T,. This mode is called film evaporation. In this study, we investigated the 
fluid mechanics and heatlmass transfer of a droplet undergoing film evaporation. 

A number of experimental and theoretical studies relevant to droplet film 
evaporation have appeared in the literature. Tamura & Tanasawa (1959) investigated 
the problem experimentally and presented a detailed description of the different 
modes of evaporation. The authors provide droplet evaporation time us. hot- 
surface temperature for several pure and blended fuels. Gottfried, Lee & Bell (1966) 
and Gottfried & Bell (1966) measured the total evaporation time of a droplet for 
different initial droplet diameters (2-5 mm), different compounds (water, benzene, 
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544 S. Zhang and G. Gogos 

ethanol and n-octane), and different surface temperatures. The droplet lifetime and 
the droplet regression rate were measured. Furthermore, the authors provide a semi- 
empirical model of the evaporation process. The main assumptions employed are : (i) 
the flow is in a channel which is very narrow compared to its length to  model the 
vapour flow between the droplet and the hot surface ; (ii) heat is transferred to the 
droplet surface by conduction and radiation in the lower half and by radiation only 
in the upper half; (iii) quasi-steady vapour flow; and (iv) spatially uniform but 
temporally changing droplet temperature. A reasonable agreement with experiment 
was achieved. Following Gottfried et al. many studies extended their model in order 
to investigate more complicated problems. Avedisian & Koplik (1987) expanded the 
Gottfried model for a droplet evaporating over a porous surface. An analysis of flow 
in a horizontal channel bounded by an impermeable wall above (droplet surface) and 
a permeable wall of finite thickness below was used to model film evaporation. The 
model provided a basis for correlating droplet evaporation time measurements. The 
evaporation time decreased with increasing surface porosity a t  the same surface 
temperature. Avedisian, Ioffredo & O’Connor (1984) studied the effect of coal on the 
evaporation of water from mixtures of coal and water. Results showed that 
evaporation times of water were lower in the presence of coal than for a pure water 
droplet containing the same volume of water as in the corresponding coal/water 
mixture. Michiyoshi & Makino (1977) investigated the surface material effect 
(copper, brass, carbon steel and stainless steel) on the droplet evaporation time. For 
a fixed surface temperature above the Leidenfrost point, the same evaporation time 
was measured regardless of the kind of surface material. Presumably, the vapour film 
acts as a ‘buffer zone’ minimizing the effect of different surface material. 

A careful examination of the experimental literature reveals that  there is a 
difficulty with horizontal stability. Thus, Gottfried et al. (1966) report that, ‘. . .if the 
droplet wandered off the test surface the run was rejected ’. Nevertheless, they were 
able to measure droplet lifetimes as a function of the hot-surface temperature and 
droplet radii as a function of time. Most of the other researehers referred to  above 
resolved this difficulty by placing the droplet on a slightly concave surface. 

With respect to  theoretical work, Nguyen & Avedisian (1987) developed a 
numerical model using bispherical coordinates. The inertial terms for mass, heat and 
fluid flow were retained. However, the droplet temperature was assumed spatially 
uniform. It was predicted that evaporation time decreases with increasing surface 
temperature and that the droplet moves away from the surface as it evaporates. Sen 
6 Law (1984) pursued a rigorous analytical solution in bispherical coordinates for a 
droplet evaporating near a hot plate. Their solution is given in an incomplete 
Gegenbauer series. In view of this it cannot describe a radially outward evaporation- 
induced velocity. It was predicted that the force on a droplet of a given radius 
increases as the droplet gets closer to the plate. Their solution is similar to that 
published for a pair of spheres moving in an unbounded ambience and separated by 
a given distance. Stimson & Jeffery (1926) obtained the flow-field solution for two 
solid spheres moving with equal small constant velocities parallel to their line of 
centres. Following their work, a number of studies were conducted to expand the 
Stimson & Jeffery solution. Goldman, Cox & Brenner (1966) determined the terminal 
settling motion of two spheres a t  small Reynolds numbers in an unbounded fluid. 
The authors obtained numerical values for the linear and angular velocities of the 
spheres as a function of their relative separation and of the orientation of their line- 
of-centres relative to the direction of gravity. They obtained good agreement with 
experimental data available in the literature. Haber, Hetsroni & Solan (1973) derived 
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exact solutions for the quasi-steady creeping flow internal and external to two 
droplets moving along their line of centres. Sadhal & Oguz (1985) investigated the 
translatory motion of a compound multiphase drop, consisting of a liquid drop or a 
gas bubble completely coated by another liquid, and moving in a third immiscible 
fluid. Its motion was investigated purely from a fluid-mechanics point of view. Oguz 
& Sadhal (1987) examined the time history of the motion of a compound multiphase 
drop undergoing growth or collapse due to change of phase in immiscible liquids. The 
incorporation of change of phase required the treatment of heat transfer along with 
the fluid mechanics. 

With the exception of Oguz & Sadhal (1987), the above theoretical studies do not 
allow for normal velocity a t  the interface. The general flow-field solution presented 
in this study accounts for radially outward evaporation-induced velocity a t  the 
liquid-gas interfaces. It can be employed in solving the problem of a pair of 
interacting droplets moving in tandem in the Stokes’ regime while undergoing 
evaporation. I n  this study it was utilized to solve the droplet film-evaporation 
problem. In addition to the flow, the energy equation internally and externally to  the 
droplet and the species equation in the gas phase were also solved. The boundary 
conditions a t  the droplet interface couple the temperature, species and flow field. 
Results are presented for water and n-heptane (more volatile than water) droplets of 
50, 100 and 150 pm in diameter. The hydrodynamic force that the droplet 
experiences, the hydrodynamic force components (viscous and pressure), the non- 
uniformity in the evaporation-induced velocity a t  the droplet surface, the droplet 
lifetime, the role played by the volatility of the type of liquid and the variation of 
the temperature along the droplet surface are predicted. 

2. Theoretical formulation 
Consider a single-component liquid droplet of radius R evaporating over a hot 

surface at  temperature T, in an inert environment (figure 1).  The centre of the 
droplet is at a distance H from the hot surface and the closest point of the droplet 
to the hot surface is at a distance 6. The droplet is a t  its wet-bulb temperature and 
spatial temperature variation along the surface of the droplet and its interior is 
allowed. 

The following assumptions are employed : 
( i )  The vapour flow field around the droplet is in the Stokes regime. The 

evaporation-induced velocity in the lower surface of the droplet is given by 

where AT is the temperature difference between the droplet surface and the hot 
surface, A, and p, are the thermal conductivity and density of the gaseous phase 
respectively, and h,, is the heat of vaporization of the liquid droplet. For SIR 4 1, the 
flow between the droplet and the hot surface can be considered as approximating 
channel flow. Then, the characteristic velocity for the flow is the radial velocity 
V* - (RIS) Kvap. Consequently, the Reynolds number Re,  that  governs the flow 
regime is given by 

where p, is the dynamic viscosity of the gaseous phase. Sufficiently small droplets can 
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isothermal surface at T, 

FIGURE 1 .  Geometry of the problem. 

soar above the surface at  a height comparable with their radius (Goldshtik, Khanin 
& Ligai 1986). It is with this case that the present study is concerned. Since 
R / 6  N 0(1), the Reynolds number Re = hgAT/,ug hfg. For water drops under normal 
conditions, Re w 1 only a t  AT x 1500 K. For other substances, such as n-heptane 
and other hydrocarbons, the Reynolds number is small only for moderate 
temperature differences (AT < 200 K). 

(ii) Gas-phase quasi-steadiness. Owing to the significant density difference 
between the liquid and gas, quantities at  the droplet surface such as regression rate, 
temperature and species concentration change at  rates much slower than those of the 
gas-phase transport processes. Therefore, the gas-phase processes can be considered 
as steady (Law 1982). 

(iii) Internal liquid motion is neglected. The neglect of any internal circulation 
within the droplet is justified on the basis of the small viscosity of the gaseous phase 
relative to that of the liquid. 

(iv) Droplet shape remains spherical. The size of droplets typically found in 
industrial sprays are generally less than 150 pm in diameter. Thus, the droplet shape 
is considered spherical since the Eotvos number is very small. 

(v) Radiation is negligible. Since m(T$-Pb)/(Ag(T,-G)/6) 4 1, unless the hot- 
surface temperature is extremely high, radiation may be neglected. In the above 
expression CT is the Stefan-Boltzmann constant, 8 is the gas emissivity and Tb is the 
boiling temperature of the liquid droplet. 

(vi) Physical properties are constant. 
With these approximations, we write the governing equations as follows. 

For the gaseous phase: v.v,=o, (2.1) 
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v2T, = 0, 

v2yB = 0, 

For the liquid phase : v y  = 0, (2.5) 

where g, 1 refer to gaseous and liquid phases respectively. In the above equations V 
is the velocity, T is the temperature, Y is the mass fraction of the vaporizing species 
and p is the pressure. 

The boundary conditions are 

On the hot surface: 5 = 0, (2.6) 

Tg = T,, (2.7) 

ay 
= 0. 

an 

On the droplet surface : v,, = 0, (2.9) 

T, = (2.10) 

ay 
( 1  - Y,) V,, +Dg$ = 0 (impermeability condition), 

aT a?-  
an an A 3 - A 1 - -  - p, &, h,, (interfacial heat balance), 

(2.11) 

(2.12) 

where y = molecular weight of vapour/molecular weight of inert gas, subscripts n 
and T indicate normal and tangential directions respectively, Ro is the universal gas 
constant and D, is the binary gas diffusion coefficient. Furthermore, the temperature 
remains finite everywhere in the droplet interior and far away from the droplet, 
% = T, and yB = 0. 

Note that the system of equations is nonlinear owing to the coupling of %, yB and 
&, in the Clausius-Clapeyron equation and impermeability condition. The governing 
equations in dimensionless form are as follows: 

V'. v, = 0, (2.14) 

(2.15) 

Vr2T; = 0, (2.16) 

v y  = 0, (2.17) 

v 2 T ;  = 0. (2.18) 

- v r p ;  + V'2 v, = 0, 

Boundary conditions : 

on the hot surface v, = 0, 

Yg = 0, 

(2.19) 

(2.20) 

(2.21) 
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on the droplet surface ViT = 0, (2.22) 

Tk = Ti. 
Combining (2.11) and (2.12) 

(2.23) 

(2.24) 

Furthermore, the Clausius-Clapeyron equation is given by (2.13). In  the above 
equations 

h AT A, T - T ,  
p ; h  , w,=-wg, Y=- 

AT ' 
wg = 

B g fg A, 

The asterisk indicates the characteristic quantities which have been chosen as 

L* = D ,  V* = A, AT/L*p, h,,, = p, V*lL*, AT = T,- Tb, 
where D is droplet diameter. For simplicity, we omit the prime hereafter. In the next 
section the analytical solution to the problem is derived. 

3. Method of solution 
The temperature field both in the gas and liquid phases and the gas-phase vapour 

mass fraction are obtained first. This part of the solution provides the wet-bulb 
temperature along the droplet surface and the radial evaporation-induced velocity at  
the droplet surface, which is then used as a boundary condition for the equations 
governing the flow field. 

3.1. Temperature and vapour mass fraction jields 

The solution is obtained in bispherical coordinates (6, 7,  4). Owing to axisymmetry, 
the solution is independent of 4. The bispherical coordinates are related to the 
cylindrical coordinates ( r ,  z ,  4) through the transformations 

where - co < < < 00, 0 < 7 < K, and c > 0 is half the distance between the points 
defined by 6+ 00 and <+- co on the z-axis. Choosing H = c cothp and R = c/sinhB 
would let the droplet surface and the hot surface to be represented by coordinates 
of constant values, 6 = /3 and 6 = 0 respectively, so that the method of separation of 
variables can be employed. 

Initially equations (2.13) and (2.24) are replaced by the following expansions : 
W 

T ~ I S = ~  = ( C O ~ ~ P - P ) '  C cnpn(pC), (3.3) 
n=o 

(3.4) 
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where P,(p) is Legendre polynomial of order n and ,u = cosr. Using (3.3) and (3.4) 
together with the boundary conditions as provided by (2.20), (2.21) and (2.23) as well 
as finiteness a t  the droplet interior < a), the solutions to (2.16)-(2.18) are 
obtained as 

s inh(n+f)(  
$ = (coshg-p); n-oCnsinh(n++)/3 C Pn(p)i (3.5) 

The above solutions satisfy yB = 0 and $ = Tw at infinity (E+O,p = 1). The 
Clausius-Clapeyron equation and (2.24), which was obtained by combining the 
impermeability condition and the interfacial heat balance at the droplet surface, are 
used next to  solve for c, and d,. The Clausius-Clapeyron equation can be linearized 
about some reference temperature T r e e  as 

yB = a+bTg, 
where 

(3.9) 

and 

Combining ( 3 4 ,  (3.6) and (3.8): 

d, = bcn+1//2ae-("+~)~, 

Combining (2.24) and (3.5)-(3.7), we obtain 

n = 0, 1, ... 

(3.10) 

(3.11) 

n-0 n-0 I 

N 1/2e-(m+t)1Rm , 

(3.12) 
I m m  

m-0 n-0 

= - 2 { C ( 1 / 2 e - c m + ~ ) ~ R , + 1 / 2 e - ( n + ~ ) ~ R m ) N ~ m n -  l m n  

1 = 0,1 , .  . . , 
where 

Q ,  = c,{ (wg - w1 + 6 )  sinh p+ (2n+ 1) [wg coth (n +$) p+ wg 
+ b tanh (n + 4) f l  cosh /3} - ~ c , - ~ { w ~  coth (n -4) /3+ w1 + b tanh (n-8) p} 
- (n+ 1) cn+l{wg coth (n+%)/?+ w1 + b tanh (n+%)/3}, 

- n e-cn-l)B tanh (n - $) p- (n + 1) e-(,+$)fl tanh (n + %) p}, 
R, = 1/2a{e-(n+afi[sinh/3+(2n+1) coshptanh (n+$)/3] 

G ,  = c,{(wg-wl)sinhp+(2n+ l)[w,coth (n+~)/3+wl]cosh/?} 
-ncnPl[wg coth (n +a) /3+ wl] - (n + 1) c,+,[w, coth (n + a) /3+ wl] 
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and (3.13) 

The integral in (3.13) results from (2.24). Since the solutions to q, q and yB are 
expressed as series of Legendre polynomials, the appearance of the term 1 - Yp on the 
right-hand side of (2.24) leads to a product of such series. Expressing this product as 
a single series of Legendre polynomials introduces the integral given by (3.13). The 
evaluation of this integral is given by Gaunt (1929). 

The solution to (3.11) and (3.12) provides c, and d,.  These two equations are solved 
iteratively, since (3.12) is nonlinear. 

3.2. Velocity j e l d  

The governing equations and boundary conditions for the flow field are 

V . v , = O ,  

-vpg+v2v, = 0;  

(3.14) 

(3.15) 

on the plate % = O ;  (3.16) 

and on the droplet surface 

(3.17) 

where = T,--Aq and h = h,/h,. Note that the right-hand side of (3.17) is provided 
by the temperature-field solution obtained in $3.1. Introducing the stream function 
Y, the velocity components in bispherical coordinates are given by 

(cosht-p)2 3Y 
c2siny 87 ' 

v,= (3.18) 

(3.19) 
(cosh&+-p)2 a!P 

c'sinrj a t  * q=-  

Then the momentum eqhation becomes 

where 
E4Y = 0, (3.20) 

On the plate (g = 0) Y=O,  (3.22) 

- = 0, 
av 
at 

and on the droplet surface (6 = p) 
aY 
z=0, 

The general solution of (3.20) can be written as (Appendix A) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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where 

F,(fl) = A ,  cosh (n-$)  f l+  B, sinh ( n - t )  f l+  C, cosh (n+$)  (+On sinh ( n + $ )  f l ,  
(3.27) 

and C;t,(p) are Gegenbauer polynomials of order (n+  1) and degree -t. 
Note that the stream-function series solution starts with n = - 1 .  With the 

exception of Oguz & Sadhal(1987), the above solution appeared extensively in prior 
works starting with n = 1. This has been adequate since these works dealt with non- 
evaporating spheres. According to Sampson (1891), the expansion of Y requires a 
complete set of eigenfunctions whenever q,=l + q,--l. In this problem, owing to 
the outward, evaporation-induced flow field y1,, =k yl,,-l, therefore it is critically 
important to keep the additional terms. Ensuring that the velocity components 
remain finite in the solution domain (Appendix A), the stream function is given by 

(3.28) 
m 

= (cosht-~)- '  [Q(c, PI + CFn(E) cA1@)13 
12-1 

where 

&(fl,  p )  = A ( 1 - p )  [cosh (46) + cosh ($91 +B( 1 + p )  [sinh ($6) - f sinh ($31. (3.29) 

The integration constants A,, B,, C,, D,, A and B can be obtained by satisfying the 
boundary conditions, (3.22)-(3.25). Using boundary condition (3.22) and (3.23) 

A = 0, (3.30) 

A , + C , = O ,  n = 1 , 2  ,..., 
( 2 n - l ) B n + ( 2 n + 3 ) D , = 0 ,  n =  1 , 2 , .  

(3.31) 

(3.32) 

Using (3.31) and (3.32), we eliminate C, and D,. The remaining integration constants 
A,, B, and B can be obtained using boundary conditions (3.24) and (3.25). After 
some lengthy algebra a system of equations of order 2M+ 1 is obtained (Appendix 
B), where M is the number of terms that need to be retained in the series solution for 
adequate accuracy. The system of equations can be put into a matrix form and are 
solved numerically. Once the flow-field solution is obtained, the evaporation rate, the 
hydrodynamic force that the droplet experiences, and other physical quantities of 
interest can be computed. 

3.3. Physical quantities 
In  this section equations are presented in dimensional form for obtaining the 
hydrodynamic force and the droplet regression rate. The force, F ,  exerted on the 
liquid droplet is given by 

where the viscous component F, and pressure component FD are 

F = F,+Fp, (3.33) 

(3.34) 

n 
L 

F = z.(-pl)*ds. (3.35) 
p J, and 

In  the above 9 = f[V V +  (V V)'] and d.s is a surface element on the droplet surface. 
Introducing the stream function Y,  the force components in bispherical coordinates 
are given by 

(3.36) 
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and (3.37) 

Substituting the solution for Y in (3.36) and (3.37), the following formulae for the 
viscous and pressure components were obtained after some extremely 
algebra : 

F, = - 32 42 119e-812 sinh @sinhp(cothp- 1) (2 cosh p+ 1) B 
9 c  

{ eC2@(2w sinh p- 3 cosh p) A, 
1 6 d 2  np,sinhp -- 

n=l 3 

Fp = %!? B c - P 1 2  sinh psinh +/3 (coth p- 1) [sinh p ( coth2 p-; coth p+ 1)  
3 c  

1 6 4 2  npgsinh/3 {e-'@(2wsinh/3-3 coshp)A, + coth @-a] B + y  
C n=l 

e-'"B( - 2w2 sinh p+ w cosh /? + 3 sinh p) 
w + l  

(3 cosh w p -  sinh up) 
+ 4sinhp 

where w = n+$. The total hydrodynamic force is given by 

The droplet regression rate is given by 

tedious 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

where m is the mass of the droplet and t is time. Furthermore, balancing the 
hydrodynamic force with the droplet weight we obtain 

mg = F .  (3.42) 

The contribution of the acceleration term, which was left out in the above equation, 
has been investigated. The term plays a role only towards the end of the droplet 
lifetime when d&/dt changes a t  a faster rate (see figure lo), but it still remains 
negligible. Numerical integration of (3.41), while satisfying equation (3.42) at each 
time step, provides time histories for the separation distance between the droplet and 
the hot surface, the temperature field, the evaporation rate, and other physical 
quantities of interest. 

4. Results and discussion 
We now present results for water and n-heptane droplets evaporating in air. 

Computations have been carried out for hot-surface temperatures of 573, 673, 773 
and 873 K for water droplets and 472 and 572 K for n-heptane droplets. The short 
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FIQURE 2. Streamlines around a water droplet and relative magnitude of normal velocity V,, at 
the droplet surface for three different separation distances: (a) 6 = 0.2, ( b )  6 = 0.3, (c) S = 0.5. 
(T, = 673 K.) 

range of surface temperatures chosen for the n-heptane cases is imposed by the small- 
Reynolds-number restriction of the theory presented above. Both substances have 
approximately the same boiling temperature (T, = 373.15 K for water and 
Tb = 371.55 K for n-heptane). The two differ substantially in volatility, with the 
n-heptane being the more volatile. 

In the first section below we present quasi-steady results for droplets located at 
fixed distances from the hot surface. In the second section, time histories are 
presented for droplets suspended on their own vapour while evaporating. Based on 
sphericity considerations, a droplet diameter of 100 pm was used, unless otherwise 
indicated. The physical properties were obtained from Raznjevic (1976) and 
Vargaftik (1975). 

4.1. Quasi-steady results 
In  figure 2 the streamlines around the droplet and the corresponding magnitude of 
the normal velocity V,, a t  the droplet surface are presented for three separation 
distances. The non-uniformity in V,, caused by the hot surface is intense for small 
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FIGURE 3. Effect of separation distance 6 on the temperature variation along the droplet 
surface (water droplet, T, = 673 K). 
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FIGURE 4. Effect of wall temperature T, on the temperature variation along the droplet surface 
(water droplet, 6 = 0.3). 

separation distances 6 and weakens as 6 increases. For a separation distance of one 
radius (S = 0.5) ,  V,, is almost uniform. In figure 3 the effect of separation distance on 
the temperature variation along the droplet surface for a water droplet is shown. For 
a separation distance of 8 of the droplet radius (6 = 0.2), the temperature difference 
between 8 = 0  and 180" is as much as 10K. The linearization of the Clausius- 
Clapeyron equation within such a temperature range leads to a maximum 
error of 2 %. This temperature difference weakens as 6 increases. At a separation 
distance of three radii (6 = 1.5) the droplet is at an almost uniform temperature. 
Approximately 80% of the temperature variation takes place on the droplet half 
facing the hot surface. Also, note that the droplet surface temperature is the so-called 
web-bulb temperature, which is substantially below the normal boiling point for 
water. Figure 4 presents the effect of the hot-surface temperature, T,, on the 
temperature variation along the droplet surface for a water droplet. The droplet 
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FIGURE 5. Effect of liquid type on the temperature variation along the droplet surface 
(8 = 0.3). 
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FIGURE 6. The variation of the droplet surface maximum temperature difference with T~ and 

surface temperature is raised overall with increasing T, ; however, the temperature 
difference between 6 = 0 and 180' remains approximately the same for different 
values of T,. In  figure 5 the effect of liquid type on the temperature variation along 
the droplet surface is shown. The temperature variation along the surface for the 
water droplet is much smaller than that for an n-heptane droplet, since the thermal 
conductivity of water is approximately seven times that of n-heptane. The maximum 
difference in the droplet surface temperature between 6 = 0 and 180' (x-q8,,) is 
shown in figure 6 as a function of separation distance 6, for water and n-heptane 
droplets for various hot-surface temperatures. 

The hydrodynamic force exerted on a water droplet is plotted in figure 7 as a 
function of separation distance for different hot-surface temperatures. The 
hydrodynamic force decreases asymptotically to zero with increasing 6. For the same 
value of 6, the hydrodynamic force increases with T,, since the radially outward 
evaporation-induced flow field intensifies with increasing T,. In  figure 8 the 
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FIQURE 8. Variation of the hydrodynamic force and its components for a water droplet 
with 6 (T, = 573 K). 

hydrodynamic force and its components are plotted as a function of separation 
distance for a water droplet. For small separation distances the pressure force 
component is significantly larger than the viscous force, whereas for large separation 
distances the two components are comparable. It is a common assumption in some 
early models constructed for the Leidenfrost problem that the weight of the droplet 
is balanced by the pressure force only (Gottfried & Bell 1966; Avedisian & Koplik 
1987). The dominant role of Fp a t  small separation distances evidenced in the present 
analysis strongly supports that assumption. Figure 9 shows the hydrodynamic force 
and its components for an n-heptane droplet. Comparison with figure 8 reveals that  
the hydrodynamic force on the more volatile n-heptane droplet is larger than that 
exerted on the water droplet by a factor of approximately four. 

4.2. Transient results 

Time histories of physical quantities are obtained by balancing the weight of the 
droplet with the hydrodynamic force exerted on it at each time step. The droplet 
weight is updated at each time step using (3.41), which provides the droplet rate of 
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FIGURE 10. Temporal variation of the diameter squared (D2), separation distance (8)  and distance 
of the droplet centre from the hot surface ( H )  for a water droplet (T, = 573 K, Do = 100 pm). 

regression. In figure 10 the square of the droplet diameter (D2), the separation 
distance (6) and the distance of the droplet centre from the hot surface (H) are shown 
as functions of time for a water droplet. The initial droplet diameter is used to make 
the above quantities dimensionless. The droplet appears to be moving away from the 
hot surface as was also predicted by Nguyen & Avedisian (1987). Direct comparison 
was not possible since the authors presented results using three different 
temperatures ; plate, far-field and droplet surface temperature. The droplet centre 
moves downward ; however, the regression of the droplet diameter is faster so that 
the separation distance 8 increases. The droplet lifetime as a function of hot-surface 
temperature for different droplet initial diameters is provided in figure 11. The 
lifetime of the larger droplets decreases faster than that of the smaller droplets with 
increasing hot-surface temperature, which is in qualitative agreement with the 
experimental results of Tamura & Tanasawa (1959). In figure 12 the time histories 
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FIQURE 12. Temporal variation of the diameter squared (D'), separation distance (6) and distance 
of the droplet centre from the hot surface ( H )  for a water droplet (T! = 573 K, Do = 50 pm). 

of D2, S and H are plotted for a water droplet of initial diameter 50 pm. Comparison 
with figure 10 reveals that the smaller droplet remains a t  a much larger separation 
distance 6 throughout its lifetime. 

The temporal variations of D2, 6 and H are shown in figure 13 for an n-heptane 
droplet. Comparison with figure 10, for a water droplet, reveals that not only 6 but 
also H increases with time. Furthermore, owing to the higher volatility of n-heptane, 
the flow field is much stronger so that much higher values for 6 and H are predicted 
than those for a water droplet. 

The temporal variation of the maximum temperature difference across the droplet 
surface T, - TIBo is shown in figure 14. T,  - qB0 decreases monotonically with time as 
the size of the droplet decreases. Higher values of T, lead to smaller T, - qa0, since 
6 increases with T, ; it  was shown above (quasi-steady results) that T, - qB0 decreases 
with increasing S (figure 3) and changes weakly with T, (figure 6). I n  figure 15 the 
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FIGURE 14. Temporal variation of the maximum temperature difference across the droplet 
surface for a water droplet with Tw (Do = 100 pm). 

time histories of T,-qT,,, for droplets of different initial diameters are shown. The 
temperature difference, G-T,,,,, is much greater for larger droplets owing both to 
their size and the smaller separation distance 6. Therefore, in order to keep the error 
due to linearization of the Clausius4lapeyron equation small, a limit is imposed on 
the size of droplet that can be considered. 

5. Conclusion 
In  the present study we have carried out a detailed theoretical analysis of droplet 

film evaporation over a hot surface. The fluid mechanics and the heat/mass transfer 
involved have been carefully studied ; the droplet lifetime, the non-uniformity in the 
temperature along the droplet surface, the separation distance between the droplet 
and the hot surface and the effect of the volatility of the liquid on the above 
quantities have been predicted and discussed. Results have been presented for 
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FIQURE 15. Temporal variation of the maximum temperature difference across the droplet 
surface for water droplets of different size (T, = 673 K). 

droplet sizes typically found in industrial sprays (less than 150 pm in diameter). The 
experimental work available in the literature has presented results for sessile drops 
1-5 mm in diameter. Therefore, quantitative comparison has not been possible, since 
for such large drops, the sphericity assumption of the present study is not satisfied 
and the error due to linearization of Clausius-Clapeyron equation would be 
significant. Future work to extend and improve the present analysis should include 
the inertia terms in the conservation equations and the Clausius-Clapeyron equation 
without linearization so that the restrictions on the Reynolds number and on the 
droplet sizes considered can be lessened. 

The authors are very grateful for the support of this research by the National 
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Appendix A. Flow-field solution 
The velocity components are given by 

and 

where 

S;;' = 0 for n = - 1 and S;;l= 1 for n + - 1. Equations (A 1) and (A 2) are examined for 
singular points. For 5, the only singular point could be at  infinity (f = 0, p = 1). For 
5, the'possible singular points are at infinity (f = 0 , p  = 1 )  and along the line of 
symmetry (p = 1 and ,u = - 1). Next we consider these points in detail. 



Film evaporation of a spherical droplet over a hot surface 561 

Consider first the possible singular point of 5. Only the first term in (A 1)  is 
singular at infinity (6 = 0 , p  = 1 ) .  Since for n 2 1,  C;t,(,u) = (1 -p2)  f ( p )  with f ( p )  
finite a t  p = 1, only terms for n = - 1 and n = 0 in (A 1 )  are singular. The singularity 
is removed by requiring that 

0 

lim C F ~ ( E ) C ; ~ , ( ~ )  = 0. 

A_,  + c-, = A ,  + c,. 
t+O n--1 

This leads to tc+l 

Next, we consider the singular points of V,. 
(i) Possible singularity at infinity ( E +  0, p = 1) .  Taking the limit as E+ 0 and p = 1 

reveals that  this point is not singular. Therefore, no requirement is imposed on the 
coefficients of the stream-function solution. 

(ii) Along the line of symmetry (p = 1 and p = - 1) .  Since for n 2 1 ,  

G\lW = (1 - P 2 ) f W  
with f ( p )  finite at p = f 1,  only terms for n = - 1 and n = 0 in (A 2) are singular. The 
singularity is removed by requiring that 

0 

X ~ , t l ( ~ )  w n ( E )  = 0, 
n--1 

for p = f 1. Then we have 
b ( 0  - WO(E) = 0 

and 

Equations (A 4) and (A 5) lead to the following relations : 
W-,(t) + w,cn = 0. 

and 

Letting A ,  = A ,  D-, = R, 3 0 ,  = C,  and using (A 3)  and (A 6)-(A 9), the stream 
function Y is given by 

Y = (cosh E-p)-g{A(l - p )  (coshic+fcosh$E) 
W 

+ (B+Cp)(sinhSE-+sinh$E)+ Fn(() C; t l (p ) } .  (A 10) 
n-1 

From physical considerations we set B = C ,  unless V, =l 0 along the z-axis. 

Appendix B. Determination of coefficients in the flow-field solution 

solving the following system of equations : 
The integration constants A,, Bn and B of the stream function Yare obtained by 

n + l  an, B(cosh$3-cosh$b)-S~- 2n- 1 Irn-1 (P) A n-1+ sn-1 (B) Bn-11 

+ [ r n ( P )  co~hP-$~p,(P)~inhPIAn + [ s n ( P )  coshB-&(m(P)sinhPIRn 

n 
2n+3 [rn+l (B)An+,+sn+, (P)Bn+l l  = 0, n = 1 , 2 , * * *  (B 1) -- 
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and 

In  the above system of equations 
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(B 2) 
2 
3c - H,(P) = &(PI + S,(P), n = 0,192, . . . 1 

p , ( f )  = cosh(n-+)f-cosh(n+%)(, (B 3) 

(B 4) 

sinh(n+%)f , (B 5) 

(B 6) 

2n- 1 
2n+3 

q,( f )  = sinh (n-+) 6 - -  sinh (n + 8) 6 ,  

2n+3 r,(f) = (.-a) sinh(n-a)(-- [ 2n- 1 

s, ( f )  = (n-a) [cosh(n- i )6-cosh(n+$)f ] ,  

H,(C) = (sinh if - sinh 86) [6,,B($ + cosh f )  + +anl B ]  

1 

and 

n dG,- l ( f )  -2 (n+1)(n+2)  dG,+Af) 
+- 2n-1 df ] 3[(2n+3)(2n+5) d6 

+(2n-l)(2n+3) df (2n-1)(2n-3) df ' 
2n2 + 2n - 1 dG,(f) + n(n-l) dGTJ,-2(f)] (B 9) 

with h = h,/h,. Also, @ = 1 - 6i,, where dij is the Kronecker delta function. 
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